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Abstract-A spectral analysis of the acceleration wave problem in general elasto-plastic materials
is carried out. whercby cxplicit expressions for the eigenvalues and eigenvectors are obtained. In
case of nonassociated plasticity. all eigenvectors become nonorthogonal and one eigenvalue always
remains unchanged and equal to the shear modulus. For a very broad class of nonassociated
plasticity models. it is shown that the eigenvalues arc always real. implying that so-called "diver
gencc" instability can occur. while "l1uth:r" instability can ncvcr occur. It is found that a ccrtain
value of the hardening modulus exists for which sfl\.'Cific propagation directions will always imply
that all wave specds arc identical and equal to the elastic distortion wave speed. Moreover. in this
situation the eigenvectors arc arbitrary. corresponding to a state of diffuse w;\Ve modes. The criteria
of von Mises and Rankine arc used to illustrate some of the tindings.

INTRODUCTION

Propagation of 'lcccleration waves in solid bodies is a phenomenon which has long been
subject to intensive investigation. It turns out that the fundament.1I nature of acceleration
waves relates directly to the important issues of stability. static bifurcations and plane wave
propagation. Moreover. recent finite clement developments to capture the localization of
strains in thin zones within a body have intensilied the interest in acceleration waves
considerably.

The pioneering work by Hadamard (1903). where clastic bodies were studied. estab
lished the basis for the analysis. Hill (1961. 1962) and Mandel (1962.1964) extended this
work to c1asto-plasticity and further progress was obtained by Rice (1976). The work of
Truesdell (1965) provides a comprehensive treatment of many of the ,tspects related to
acceleration waves. Hill (1962) determined analytical expressions by which the eigenvalues
and eigenvectors for associated plasticity can be determined. However. except for the
advances made by Mandel (1964). the issue of how to determine the eigenvalues and
eigenvectors for general nonassociated plasticity has been left open. which means that it
has been difficult to gain insight into the fundamental mechanisms of dilTerent types of
material models. The eigenvalues and eigenvectors can always be determined numerically
for dilferent wave propagation directions. cf. Sobh (1987). but apart from being time
consuming. such an approach docs not facilitate a concise and general evaluation. Here.
we shall present explicit analytical expressions for the eigenvalues and eigenvectors for
general nonassociated plasticity. We shall thereby employ the spectral results obtained for
the static bifurcation problem de.tlt with by Ottosen and Runesson (1991). It is also shown
that for a broad class of nonassociated plasticity. "flutter" instability cannot occur and we
identify the interesting phenomenon of diffuse wave modes.

PLASTICITY FORMULATION

For the sake of simplicity. we shall assume that displacements and strains are small.
With U" and £'" being the stress and strain tensor. respectively. and a dot denoting the time
derivative. the constitutive relations appropriate for a nonassociated flow rule are
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(I)

where the bilinear tangent stiffness tensor D"k1 is given by

(E)

(P)

(2)

for elastic (E) and plastic (P) loading, respectively. Here D~jk/ denotes the isotropic elastic
stiffness tensor. which is assumed to be positive definite. constant and symmetric. i.e.
D~/ll = D~,'I' Moreover,

. Df
1" = ;;--;

( (1,/
(3)

where f and ,q are the yield fUllction and plastic potential. respectively, which depend on
the stress state and a set of hardening variables. The positive quantity A is defined by

(4)

where II is the gencralized plastic modulus. II is positive. zero or negative for hardening.
perfel.:t or softening plastil.:ity. respel.:tivcly. It appears that D,," is symmetril.: ([)'Iki = D,b/)

for assol.:iated plastil.:ity. i.e. 1;, = .cl", whereas D'lll is nonsymmetric for nonassol.:iated
plastil.:i ty.

Plastil.: loading (P) will take place whcnever the stress st'lte is on the yield surfal.:e and

(5)

Otherwise. elastic behaviour (E) ol.:curs. Here. we shall only I.:onsider the case of plastil.:
loading.

The motion of a so-called singular surface. across whil.:h variables may be discon
tinuous. is the main subject of this study. The jump conditions assol.:iated with such
discontinuities were already established in the pioneering work of Hadamard (1903). How
ever. it seems appropriate to present a short derivation of the most important jump
conditions while only assumptions that arc relevant to the present analysis arc made.

PRELIMINARIES

Considering the vel.:tor 1; = f(x.). where Xk is the position vector. we have

(6)

The length of dXk is denoted by Idxk I = d.l'. i.e. the unit vector .\'1. in the direction of dXl is
given by .1', = dxdd.l'. From egn (6) we then obtain

(7)

If the vector f is constant on a surface S. eqn (7) yields:
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(8)

where t, denotes a unit vector tangential to the surface S. According to eqn (8) the vector
(~fl'(~x, is normal to the arbitrary tangential vector tk• i.e. we have (~fl/2xk = clnk' where
nk is the unit vector normal to the surface Sand C1 is a scalar. The same arguments hold
for the vectors (~j~/(~Xk and 2f,'(~Xk' i.e. eqn (8) has the solution

(~ff

-,- = C,nk'
eXk

(9)

If. in eqn (7). we let Sk be fl,. then we use the notation ds = dn and find with eqn (9) that

i.e. eqn (9) can be written as

df
d~ = Ci •

( 10)

(II)

If. instead of a vector function '/;. we study a scalar function f(x,) that is constant on the
surface S. then elln (II) reduces to the familiar expression for the gradient

( 12)

Similarly. considering a tensor function J;,(x,) that is constant on the surface S. we obtain

(13)

JUMI' CONDITIONS

We shall study the motion of a surface S through the body. This surf~lce divides the
body so that a quantity-say I,-has one value f;; on one side of S and another value f:,
on the other side of S. The difference ofj;, across S will. as usual. be denoted by [fJ. i.e.

We here consider a state where the displacement II,. the velocity Ii,. the displacement gradient
II,., = tll,/(~X" the strain I:" and the stress a'l arc continuous across S. i.e.

[II,) = [Ii,) = [II,.J = [I:,J = [a,,) = 0 ( 14)

and we shall investigate the possibility that a surf,lce S can exist. across which the velocity
gradient Iii.,. the stress rate ai, and the acceleration ii, become discontinuous. If such a
surface exists then. since [Ii,) = [a,J = 0 holds on the surface. then we can usc eqns (10).
(II) and (13) to obtain

( 15)

and



138 "l. S. OTIOSES and K. RISF_'iSOS

t[(J,,1 d[(JJ
-:;_. = lI,.
ex, dll

(16)

Now let x,(q.1) be an arbitrary curve on S. where £f is a curve parameter and f is time. The
velocity of a point on this curve is given by .t,. The component of .t. in the direction of the
normal fI, to the surface is by definition the so-called wave speed C. i.e.

(. = .i:,II,. ( 17)

In otha words the wave speed is the speed with which S travels in the direction of 11,.

Assume that the vector function f = Ox,. r) is always zero (1n the surface S. Differ
entiation with respect to time yields

where /; = i',/;;i"'f. Usc of eqns ( II) and (17) gives

I'· (! df = 0. ,+ i .
(11

Likewise. for the tensor function f,(.\'" t) = 0 on the surl;lce S. we obtain

and usc ofeqns (13) and (17) results in

'. .tI/:,
./" + (; I = O.

(11

As [Ii,] = [(J"I = 0 on S. setting I = [/i,J in eqn (I X) and I, = [11"J in eqn (19) provides

( IS)

( 19)

[ii,1 + u d[/i,1 = 0
dll

[ti,,1 + L'd[I1,,1 = O.
till

Multiplying the last equation by II, and using eqn (16) yields

. ,2[(J,,1
[(J"I/) + U ~ _.. = O.

(.x)

(20a)

(2011)

(21 )

On each side of the surface S. all variables arc continuous and differentiable, i.e. the standard
equilibrium conditions hold and we can thercrore write

(..... (1""+, .. - .......
~ - ), - P II, •
( x,

We shall also assume that the body force h, and mass density p arc continuous across the
surface S. i.e. h;' = h; = h, and p" = p' = p. Subtraction of the two equilibrium conditions
thus gives
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(22)

We are now in a position to formulate the acceleration wave equations. Use of eqn
(221 in (21) results in

[i1ul!l, +pU[ii,] = 0

and from eqns (15) and (20a) we have

[ii,] = - ['c,.

Combining these equations. we obtain

[rT,,]", = pU~c,. (23)

The slress rates are assumed to correspond to plastic loading. and as the stresses and strains
are continuous. the elasto-plastil: tangent stifrness tensor D"H is also continuous across S.
I.e.

(24)

where eqn (15) has heen used. From eqns (23) and (24). we finally ohtain the equations
whidl control al:cc!eration waves

(25)

where the sO-l:alled '1l:oustic tensor Q,I is given hy

(26)

In the analysis of static bifurcation Q" is often called the characteristic stiffness tensor. It
appears that Q,I depends on the material parameters as well as on the direction tI,. The
equation system (25) constitutes un eigenvulue problem with pU~ being the eigenvalue and
c, the eigenvector und we shall later present analytical solutions for this eigenvalue problem.
Since only I:ertain c,-vel:tors are eigcnvel:tors. these are said to be polarized .ll1d therefore
the Q,rtensor is ol:l:asionally termed the polarization tensor. If the wave speed U is zero.
eqn (25) redul:es to the static bifurcation condition considered by Ottosen and Runesson
(1991 I. i.e. the surface S. across which jumps may occur in the stress und strain rates. is
then fixed in the hody.

Another important phenomenon controlled by eqn (25) is that of propagation of plane
waves. Whereas eqn (25) was derived on the basis that a surface S -across which the stress
and struin rutes as well us the acceleration are discontinuous -travels through the material.
we shull now show thut the equations for the existence of plane waves are formally the
sume. even though plane waves do not necessarily involve discontinuities.

A plane wave in direction !lk is defined by

/I, = C,f("kXk ± Ut) (27)

where c,. !I, und U arc constants and f denotes an arbitrary function. If f is twice
dil1crentiablc. we have
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(28)

Assume that the material IS stressed to a certain state and that this state IS III static
equilibrium. i.e.

rI"., + ph, = O. (2lJ)

We now investigate the existence of small vibrations about this equilibrium state assuming
that the body forces are unchanged. The additional small stresses and displacements caused
by the vibrations are denoted by rI,~ and 11,. respectively. rt follows that

Subtraction of eqn (29) from (30) gives

* - ..rI"., - pll,.

(30)

(1)

Assume now that the material is in an homogeneous state in its original equilibrium
configuration. Then the clastic-plastic constitutive tensor is constant throughout the body.
i.e. eqn (J I) yields

By using eqn (2X) in this expression. we recover the acceleration wave eqn (25). which
demonstrates the fact that even though acceleration waves and plane waves in gem:ral are
physically distinct phenomena, they arc controlled by the same equations. As the inves
tigation of plane waves was based on small vibrations about an already stressed state. this
is equivalent to the so-calkd acoustic approximation in l1uid mechanics and for this reason.
Q" in eqn (25) is referred to as the acoustic tensor.

If the eigenvalues pU: ofeqn (25) are real and positive. both acceleration waves and
plane wavcs exist. Sincc the amplitude of the function / in eqn (27) is small. II, will
always rcmain small. This signals a stable situation. rf pU~ is real but negative:, then the
corresponding acceleration wave does not cxist, but planc wavcs will still bc possiblc. To see
this, we notc that any linear combination of solutions of the form (27) is a valid plane wave
solution. Suppose that U ~ = - 0(2, i.e. U = ± i:x. where 0( is positive. Since pU 2 is real, the
corresponding eigenvector c, is also real and U = ± i:x corresponds to the same eigcnvector.
Choosing / as a sine function in eqn (27), the following plane wave is possible

Using Eulcr's formula. wc find that

(2)

It appears that expression (32). which was dcrived on condition that pU~ is real but negative.
provides a solution where the displaccment II, increases with time. This indicates that an
arbitrary small disturbance can grow infinitely large with time and we clearly have an
unstable situation. As. U~ is negative and as solution (32) for a fixed ,\'k-vector increases
with time without any oscillations. it is common to term the behaviour given by eqn (32)
as "divergencc" instability in accordance with the terminology in aerodynamics. cf. Rice
(1976) and Lcipholz (1972).

For linear elasticity as well as associated plasticity. the acoustic tcnsor Q" in cqn (25)
is symmetric. i.c. the eigenvalucs are always real. As the elastic constitutive tensor Df,k1 is
assumed to bc positivc definite. we havc y,Qf,y, = Y,n! Df,k1l1kY' > O. where Q~, = II, D~,klllk
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is the elastic acoustic tensor and Y, is an arbitrary vector, Le. Q~ is also positive definite.
For associated plasticity. we will show that the eigenvalues are positive as long as the static
bifurcation condition has not been achieved. whereas one eigenvalue becomes negative after
static bifurcation has become possible. In this latter case we have "divergence" instability.

For nonassociated plasticity. the acoustic tensor Qil is nonsymmetric, i.e. in principle
it is possible to have complex values of pU~. i.e. U possess both a real and an imaginary
part. Borrowing again the terminology from aerodynamics, we shall refer to this possibility
as "Rutter" instability, cf. Rice (\976) and Leipholz (1972), since the corresponding uI •

solution for a fixed XI-vector can be shown to consist of oscillations with increasing ampli
tude. However. we shall see that for a very broad class of nonassociated plasticity models.
"Rutter" instability cannot occur. Before this result can be established, we shall derive
analytical expressions for the eigenvalues and eigenvectors of eqn (25) that are applicable
to general nonassociated plasticity.

EIGENVALUES OF THE ACOUSTIC TENSOR

We shall now determine the eigenvalues 11 of the eigenvalue problem (25)

(33)

for the case of elastic isotropy and general nonassociated plasticity. In this case the clastic
stiffness tensor is given by

(34)

where E = Young's modulus and I' = Poisson's ratio (E> 0, - I < I' < 1). The clastic
acoustic tensor Q~I becomes

(35)

where G is the shear modulus. Since Q~I is positive definite, its inverse P~I exists and is given
by

(36)

It appears that both P~, and Q~I arc symmetric. From egns (26), (2) and (35) we obtain

(37)

where

With D~,kI being isotropic, we obtain

(/, = 2Gp,; hi = 2Gq,

where

(38)

(39)
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(40)

(41 )

Combining eqns (37) and (39) gives

Using eqn (35) we may now rdormulate the eigenvalue problem (33) as

[( II). I 4G ]
I - G Oil + ~:f;' 11"11- A 'l,PI (', = o.

(42)

(43)

In order to facilitate the eigenvalue analysis. we shall first obtain some useful pre
liminary results. Consider the eigenvalue problem

which due 10 elln (36) l:an he written as

[ (I-;.*G)(i,,-~ 1 I/,I/,J::, =0.
..:( I - I')

(44)

Assuming ;.* = I/G. then clIo (44) redul:es 1011,11,::, = O. In the coellidenl matrix /1,11 1 all
rows arc proporlional. whil:h proves Ihal ;.* = I (j is an eigenvalue with a mulliplidly of
Iwo. We Iherefore ohlain

(45)

where Ihe lasl eigenvalue ;.t is obtained from Ihe invarianl condilion p~ = i.T+i.!+i.t. II
appears Ihal the parameter JI is Ihe clastic "l:onstrained modulus" pertinenl to the case of
uniaxial strain.

Next. wnsider Ihe eigenvalue problem

(46)

where

(47)

and where usc has been made ofeqns (36) and (37). It was shown by Ollosen and Runesson
(1991) Ihat the eigenvalues are given as

i' l = i.~ = I:
I

i., = 1- - h,P~'(/I'. A

In Ihe presenl case where elastic isotropy is assumed. we find with cqns (36) and (39) that
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(48)

With these preliminary results we are now in the position to determine the eigenvalues /I
of eqn (43). It app~ars that on~ eigenvalu~ is /II = G. This is shown by introducing /II = G
into eqn (43) while observing that one of the rows in the coefficient matrix to c, can be
expressed as a linear combination of the remaining two rows. Hence, it follows that the
coefficient matrix is singular.

To determine the rem.lining eigenvalues lIe and II." we first use the invariant property

(49)

i\toreover. from eqn (47) we obtain

det B,I = det P~i det QII

(50)

where i.,· .lOd i., were given hy eqns (45) and (48), respectively. With III = G we may thus
solve for II; and /II from eqns (49) and (50) to ohtain

(51 )

(5:!)

Expr~ssions (51) and (5:!) provid~ c1os~d-form solutions of the eigenvalue problem (33).
Except fl)r the assumption of isotropic elasticity. these eigenvalues apply to general non
associated plasticity. Let us now evaluate these values in more detail.

For linear elasticity we huve A -+ CL uccording to eqn (4), and we obtain from eqns
(51) and (5:!) the f~101iliar expressions

III = JIJ = G; Jll = M (53)

which are independent of the direction til'

In general, we have III > 11.1 and the usual static bifurcation condition (U 1 = 0) emerges
when III =0, which according to eqn (5:!) requires ;'J = 0 in accordance with Ottosen and
Runesson (1991). This corresponds to the critical hardening modulus fI = fh. It is of
interest that J/I = G is constant ulways, whereas JI1 and /lJ change with the loading as well
as with the direction til' When H < IIh • which implies that i. J < O. it appe'lrs from eqn (52)
that

/11>0; 11.1<0 (54)

i.e. there is no acceleration wave speed for the solution corresponding to /lJ' According to the
previous discussion, this situation is referred to as "divergence" instability. For associated
plasticity the acoustic tensor is symmetric. i.e. its eigenvalues arc always real. but we shall
later prove that the same applies to a very general class of nonassociated plasticity. Before
this topic is investigated. it is of interest to determine the eigenvectors c, of the eigenvalue
problem (33).
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EIGE~VECTORSOF THE ACOCSTIC TE:\SOR

Let us now determine the eigenvectors of the a(L'ustic problem (33 L When II ::::: III = G.
eqn (43) reduces to

( I .l.G. ') 'I'

1
-.,. n,I1;- q,p, l', = O.

,_\ A.
(55)

i.e .. the eigenvector c; II corresponding to II::::: III is orthogonal to fl, as well as to P" i.e.

c: II orthogonal to II. and p,. (56)

It is of interest to investigate the IO<lding criterion ()I for the strain rate tensor
(1:,,1 ::::: (C,fl,+C,II , )/2 in the case where c, is the eigen\ector c; I'. We obtain

This result follows from eqns (38) and (31)) as well as the orthogonality of p, <lnd c; II

app'Hent from eqn (56). Thus. the strain rate tens,)r resulting from the eigenvector c; I,

corresponds in fact to neutral loading and this result also substantiates the finding that

II, = G.
When II =JI: or Jl = II, (i.e. II ¥- (I). we obtain from eqn H.1) that the corresponding

eigenvectors. denoted by C;:I and c; ". ll1ust be given by

C;"=II,+:x'I'q,: k 2. .\ (57)

where :xlA ' an: parameters to be deh.:rlllined. Inserting cqn (57) into (·BI yields the conditions

4G
nd';

A

II, 4G
1- - £/'/'/

GA'

(5l'i)

(59)

for k = :2 and 3. The equivalence of these two conditions results in an expression. which.
after some algebra. is easily shown to be identical with cqn (52).

Hill (1962) investigated the case of large strains in conjunction with associ,tted plasticity
and gave expressions from which the eigenv,t1ues and eigenvectors can be determined. To
compi.lre the present results with Hill's expressions in the case of small strains. we can insert
Ilk as given by eqn (52) into the expression for :xII' as given by eqn (5H). In the case of
associated plasticity we obtain. after some algebraic m'lllipulations. the same expressions
for the eigenvectors as provided by Hill. cf. eqns (43) (-l5) in Hill (1962). Also thc
expressions for the eigenvalues provided oy eqns (51) and (52) reduce for associated
plasticity to those given by Hill. cf. eqns (43) and (45a) in Hill (1962). In fact. eqn (45a) in
Hill (1962) emerges from our eqn (58).

Clearly. for c::' and c; " to be orthogonal to c: I'. they have to lie in the plane spanned
by II, and p,. since d I, is orthogon,t1 to this plane. cf. eqn (56). However. in the cuse of
general nonassociated plasticity q, #- p, and. furthcrmore. If, is not spanned by II, and fI,.

This implies that c:"'d lJ ¥- 0 and c:)'c: 1I #- o. It thcn follows thut c;"' and ":)' urc orthogonal
to d l

) only in the case of associ 'Itcd plasticity where q, =p,.
It is also concluded that cF' and ,,:11 are mutuully nonorthogonal in the general case.

which can be shown by considering the scalar product cj;'c)". From eqn (57) we obtain
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Using eqn (59) for example. we obtain. after some algebraic manipulation.

, l 4G niP,
:x'.l:x'" = (I-2\')-~

An,,!,

which inserted into eqn (60) gives

145

(60)

(61 )

It follows that ,,~!l and ": t) arc orthogonal only when (1, =CI,. i.e. in the case of associated
plasticity. Consequently. only associated plasticity implies that all the eigenvectors arc
orthogonal. whereas all eigenvectors become nonorthogonal whcncvcr nonassociatcd
plasticity is employed. That associated plasticity implies orthogon<ll cigenvector follows. of
course. trivially rrom the sYlllmetry of the acoustic tensor.

Finally. let us consider the limiting case of line<lr elasticity dclined by A .....YJ. where
the eigenvalues arc given by eqn (53). For lit = Ii I = G. eqn (55) with A .... % holds for
both c~ I) and ": II. i.e. hoth ": 1I ami ": II arc orthogonal to tI, and thcy can hc taken as
mutually orthogonal. For II! = AI both eqn (51<) <lnd (59) imply that ~1:1 = n.'Le. eqn (57)
gives that c:!) =: 11,. We h<lve thus rediscovered that the longitudinal (dilatational) waves
corresponding to II! = iH travel in the direction of ",. where,ls the transversc (shear)
W,lveS corresponding to lit = IiI = G tmvel transverse to the tI,·direction (as the notation
indicates).

Wc may summarizc by stating that for linear elasticity the two transverse waves are
orthogonal to the longitudinal wave and the transverse waves can be c_h.9s~~ as mutually
orthogonal. For associated plasticity. all the eigenvectors arc always orthogonal. whereas
nonassociated plasticity implies that all eigenvcctors become nonorthogonal.

WilEN ARE TilE EIGENVALUES REAL'?

Wc shall now prove that for a very bro,ld class of nonassociated plasticity. the eigen
valucs arc always real. implying that "divergencc" instability can occur. while the phenom
enon of "Hutter" instability cannot. Divergencc instability occurs if the discriminant Din
cqn (52)

(62)

is non-ncgativc always, We observc that when )'J ~ 0 then D ~ 0 holds always. Le. the
possibility for complex eigenv"llues expressed through D < 0 exists only when )'3 > O. which
corresponds to the regime before static bifurcation becomes possible. On introducing the
notation
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2G
lV.: =; A q,n, 1';11,

(63)

(M)

we can rewrite i., given by cqn (48) as

. .v.:.., .
!.J =; 1+ I --'\1'

-\'

With eqns (63) and (65). eqn (62) takes the form

Let us also introduce the definitions

I[,{', =; liflll'l cos (}: if/I, = lifl cos 0,,: 1',11, =; 11'1 cos Of"

Then we can write

'2(1
N,-··,vJ = A Iplll/!(cosO,.coslJ,,-cos().

(65)

(66)

(67)

(61')

For <Issociated plastil.:ity we have 1', = if, implying that °=; 0 and 0" =; 0,,, i.e. eqn (61'\)
becomes

where thc inequality is valid since cos! ()f.-I ~ O. In this case it i.ppears from cqn (66) that
J) ;:: 0, which proves the aln.:ady known fact that for associated plasticity the eigenvalues
are always real.

With this observation, it becomes natural to investigate the sign of N,-N, for non
associated plasticity as well, and we conclude that the eigenvalucs arc always real whencver

holds, which implies that

Ip =; i/.I1,I'"I,- if.P. ~ 0

2G
,V!-NJ=A'P~O.

(69)

(70)

To prove this inequality for nonassociuted plasticity, we shall muke two minor assumptions,
which arc valid for ull practicul purposes.

The first ussumption is thut 1:, = 1'/Ii"'(111 and fl" = (}f}!I'(1" possess the same princip<ll
directions. This 'lssumption is valid for general mixed isotropic-kinematic hardening, where
f =; /«(1;,- ':1.",1\,) and f} =5}«(1,,- ':1.11 ,1\,) and f 'lOd.q arc isotropic functions of the ,lrgument
(111-':I.'i' In these expressions, ':I.'i denotes a tensorial hardening parameter ("backstress")
and 1\, (:t = I. 2, ... ) arc scalar hardening parameters. The principal directions 01'1;, and g"
then coincide with those of the tensor (111- ':I.". We may now conveniently choose the
coordinate system colinear with the principal directions of1:, and /III to obtain
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r 0

~): 9" -(~'
0

D1;, = ~ f:. g:. (71)

0 13 0

where fl' 1~.fJ and gl' g:.. g3 denote the principal values off, and g". respectively. Without
loss of generality we can take

(72)

The second assumption is that eqn (72) implies

(73)

Even though we have not been able to prove that eqns (71) and (72) imply (73).
assumption (73) still comprises a very general dass of nonassociated plasticity beh:'lviour.
In facl, we have not been able to identify any existing constitutive model. which sutisties
eqn (71). but for which eqn (72) d(les not infer (73). A trivial example. which satisfies eqns
(71) ·(73). is associ:.tted devi,ttoric behaviour and nonassodated volumetric behaviour; this
Glse includes the classic nonassociated Drucker-Prager model.

From eqns (40) and ("I) we now obtain

[
(II +1'1;)111] [(.III +".tI')III]

1', == (f:. + i'/:)II:. ; q, == (.11:. + i'!/, )11:.

(.I, + ,'1,)1/ \ (.'I \ + ".tI,)1I \

This yields

v..,/ = -~-""."--".

1-2\'
(74)

where

(75)

(76)

(77)

(78)

Inserting cqns (75) -(77) in eqn (69) results in

(79)

As we wallt to prove inequality (69). it is natural to determine the extrema of (p with respect
to variations of the Il,-vector. Detuils of this analysis are given in the Appendix. where it is
proven th,lt ifl ~ 0 :.lIways holds. Therefore. according to eqn (70) it follows that
tV:. - N I ~ O. and from eqn (66) it follows that the discriminant D appearing in eqn (54) is
alwuys non-negative. i.e. the eigenvalues of the acoustic tensor QII are always real. Conse
quently. the so-called "!lutter" instubility discussed in the literature, e.g. Rice (1976). cunnot
occur.



148 N. S. OTIOSE' and K. Rt:'ESSO'

DIFFUSE WAVE \-IODES

We shall now prove that some rather dramatic wave motions can occur. which we
shall term diffuse wave motions. This phenomenon is related to the situations when Ip = o.
From the Appendix. the pertinent situations can be summarized as shown in Table I. It
appears that for general stress states. where II ~ I:. ~ (, and.'J1 ~ 9:. ~ .'I" we have three
different choices of fl, for which (p = O. For special stress states. other fl,-vectors also imply
<p = o.

According to eqn (70). the situation Ip = 0 implies that N:. .vI = 0 and from egn (66)
it then follows that the discriminant D is given by

A very interesting situation can now arise. Suppose that D = O. i.e.

(80)

M-G
/V, =

2G
(81 )

With D == O. it follows from eqns (52). (62) and (63) that

where eqn (X I) has been llsed. Therefore. when eqn (X I) is fullilled and the II,-vector is
chosen appropriately. we obtain the interesting situ"tion th"t "II eigenvalues ~lrI; equ,,1 and
arc given by

i.e. all waves travel with the same wave speed. In accordance v.ith the delinition of /V l given
by eqn (63). the fullilment of eqn (81) rcquires a specific v"luc of II. whereby it will be
recalled that q, and 1', arc fixed for thc choscn value of the II,-vector. This v"luc of A. in
turn. implies a specific value of tht: hardening modulus 11. To evaluate whether this value
is physic;tlly acccptable. wc t:valuate ;.1 as given by eqn (65). which c"n bc rewrittcn as

N,-A'l
i. 1 =1+ -.

1-\'

In the situation under consideration, <p = 0 holds and since this implies N I == N2• where N I

is given by eqn (81). we obtain

Tahle l. SilUalitllls wh.:r.: ({I -= 0; I, ~ (: ~ I, and 'I, ~ 'I, ~ .tI,

Slr.:ss sl;ll<: 1I,'\"l'\:lor

11;=1. 11,=11,=0

II, = O. II! = I. II, = I)

II, = II, = o. IIi = I

{, = I~ >/, and/or g, =H: >.q, nf+n~ = I. 11; =0

I, >I, =f, ;lOd/or g, > 'I, = g. Ili =0. ,,~ +It~ = I

{, =I: = {, and,or .II, =q: = (I, n; ,.j,.lli +1t~ = I
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. 1-2v I
0< I.) = 2(I-v) ~ 2'
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(83)

Recalling that ;.) = I for purdy elastic behaviour and ;.) = 0 when static bifurcation
becomes possible. we conclude that the positive ;.)-value given above is fully acceptable
since it corresponds to the regime before static bifurcation becomes possible in the pertinent
n,-direction.

The situation for which eqn (81) is fulfilled has some further dramatic consequences
for the eigenvectors. To show this. we have to determine the values of cos 01' and cos Oq. As
N I = N:. we obtain from eqn (68)

cos H = cos 01' cos Oq

and from eqns (63). (67) and (81) we conclude that

cos 0> O.

First consider associated behaviour. i.e. cos 0 = I. for which eqns (84) and (85) yield

cos 01' = cos 0" = I or cos 01' = cos 0" = - I.

(84)

(85)

(86)

We shall now prove that relations (86) also hold for nonassm:iated behaviour. Equation
(74) results in

Iql2 = (,1/ 1+ ,',1/,) 2"i + (,II 2+Y.C/,.) 2,,~ + (.'/, + ,',II,) 2,,~

(87)

(88)

whereas expressions for 1',", = II'I cos Of' and q,II, = II'I cos 0'1 are given by eqns (75) and
(76). Referring to Table I and considering the situation where II ~ h ~ /,; 91 ~ 92 ~ 91

and"i = 1'''2=",={)weobtain

and

which imply eqn (86). The same result applies to all the cases shown in Table I provided
that the "and/or" condition is replaced by an "and" condition.

From eqn (86) and the dclinitions 1',", = 11'1 cos 01' and q,n, = Iql cos (J'I it follows that
either

or

1', = 11'1",; q, = 1,,1",

1', = -Ipln,; q, = -Iqln,.

(89)

(90)

For the case considered. we recall from eqn (82) that 111 = 1/: = ii, = G. However. when
11 = G holds. eqn (55) defines the eigenvector Ct. i.e. we have

which due to eqns (89) and (90) takes the form
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( L __4(; Ipi :'II ')nn.c = O.
I - 2v A I I / ' , I

(91 )

Due to eqns (8~) and (86) the relation cos 1/ = I holds. Therefore. using eqns (63). (67) and
(81) we obtain

(92)

When this relation is inserted into eqn (91 ) it implies that the coetficient matrix to c,vanishes.
i.e. eqn (91) is satisfied for arbitrar)' cl-vectors.

For associated and nonassociated plasticity. we thus reach the interesting conclusion
that a certain value of the hardening modulus exists for which specific choices of the n,

vector will always imply that all wave speeds are identical and equal to the elastic shear
(distortion) wave speed. i.e. pU I: 11 = pui:1 = pCi'l = G. and the corresponding eigen
vectors arc arbitrary. This value of the hardening modulus corresponds to the regime before
static bifurcation becomes possible in the pertinent II,-direction. In this situation the acoustic
(or polarization) tensor therefore loses its ability to provide distinct-polarized-eigen
vectors and the wave modes might be termed ditruse. This situation is most remarkable
and may have significant ramitications for the interpretation of seismic waves and in
particular··· waves from underground e\pl~lsions. where the material is highly stressed.
Moreover. the existence ofdilruse wave modes also calls for special precautions in numerical
modelling.

EXAMPLES OF M·\lTRI:\L IIEIIAVIOtJR

Let us now illustrate some of the findings by considering the two simple plasticity
formulations of von Mises and Rankine.

/"1111 AI iscs criterillll
An isotropic hardening von Mises model is dclined by

f = y = ,/3J: -,,: = () (93)

where the invariant J: is given by J: = s".I""i2 with .1"" being the deviatoric stress tensor; 1\

denotes a hardening parameter. Since we assume associated plasticity 1', = 'I, holds. and
choosing the coordinate sytsem colinear with the principal directions of the stress tensor
we obtain from eqn (40) that

3 l 1 ,., ., ...

1','1, = ~.I: (11;.\'; +II~S~ +11).1',). (9~)

For simplicity. we shall in the following assume a uniaxial stress state given by the tensile
stress 0',. It follows that .....hJ: = 0'1. and eliminating ni through the constraint relation
n~ = l-ni -II~. we obtain from eqn (94)

n,l', = ~(311~ - I): Nt, = 1(311; + I).

Moreover. from eqns (4) and (48) it is simple to demonstrate that

G[I . . . ]A = H + 3G: ;., = I+:U 1-\' (3n; -1)- - 2(311; + I) .

From eqn (45) it follows that

(95)

(96)
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C2

"2

Fig. I. Unit sphen: for the n,·vector.

2G( I-v)
M= ----.-;

1-2v
G

M-G = --~;
1-2\'

G(3-4v)
M+G= 1-2v ' (97)

Use of eqns (95)-(97) in e4ns (51) and (52) then provides the following expressions for the
eigenvalues:

(98)

J~:) I {3-4\' 311i+1 J[ I 311i+1 J: 4(3"i- I):}
=21-2\'-3+(/llci)± 1-2\'+3+(/1/(;) -(3+(/IIG))(I-i\:)'

JI I

G
(99)

It appears that the normalized eigenvalues JI:/G and JII/G depend only on Poisson's ratio
\', the value of nf and on the ratio 1I/G. For given values of \' and 1I/G, it may therefore be
or interest to evaluate how JI:/G and JI,IG vary with the value of "f. Since only,,; enters
the expression the eigenvalues are independent or the specific values of nl and n J except
that the constraint relation ,,~+ n~ = I -II; always holds. According to Fig. I, showing the
unit sphere at which the ",·vector is located, this implies that along the two circles C I and
Cl given by II; = constant, we have the same eigenvalues Jil and }I,. We therefore choose
to illustrate the variation of Jil and JI., with the direction of the ",·vector by considering
only the ",,,.,·plan~shownin Fig. 2. Alternatively, the ",-value in Fig. 2 can be interpreted
as the value ±J,,~+,,~. It follows that cos'" = "I and U = (7[/2)-"', where the angle U
shown in Fig. I corresponds to the angle defined in Ollosen and Runesson (1991).

n,

Fig. 2. Plane illustration of variation of n,.

SA! 28: 2-0
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With these preliminary remarks and recalling that J.l1/G = I always holds. we may
visualize the magnitude of the normalized eigenvalues J.l~/G and J.ll/G given by eqn (99) in
the form of polar diagrams. where the polar angle t/J shown in Fig. 2 is determined by
cos t/J = n I' The results for \' = 0.3 are shown in Fig. 3 for different values of HIG.

Figure 3(a) shows the linear elastic behaviour. where J.l1 and J.lJ do not depend on
the direction of the t1,-vector. Figure 3(b) shows that plasticity introduces a directional
dependence. and in accordance with eqn (99) we observe the symmetry about both axes.
Figure 3(c) finally illustrates the situation where the eigenvalue J.lJ becomes zero for one
direction. i.e. the situation has just been reached where static bifurcation becomes possible.
This is equivalent to the condition that i.) = 0 and from eqn (96) we obtain the bifurcation
direction
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(100)

The first moment. when this relation becomes possible. occurs when the discriminant is
zero which provides

H

G
(101 )

Choosing n~ = 0 we have n~ = I - n~ = (I + \')'3. i.e. the angle (1 shown in Figs I and 2 is
determined from tan~ 0 = nr In~ = (2 - v)!( I + v) in accordance with the result given by
Ottosen and Runesson (1991). For \' = 0.3. the value 0 ~ 48.8 is obtained. cf. Fig. 3(c).
Moreover. from eqn (101) we obtain that the critical hardening modulus. for which static
bifurcation becomes possible. is given by H = - £/4. In Ottosen and Runesson (1991) the
critical hardening modulus was found to be H = - £i 12: however. since the vidd criterion
in Ottosen and Runesson (1991) was stated as / = ...,/J; - J.; = O. which ditfers from eqn
(93). the value of H in Ottosen and Runesson ( 19(1) is one third of the value of H considered
here. i.e. the two expressions for the critical hardening modulus coincide.

In Fig. 3(d) the ratio HIG is chosen as HiG = - I. i.e. the softening is more pronounced
than that for which static bifurcation first becomes possible. Static bifurcation is still
possible since it can occur when ;.\ = O. which implies elln (100). Therefore. for the given
ratio. fI/G. eqn (100) and the relation sin 0 = n, determine two 0 angles for which static
bifurcation is possible. In the present case we obtain 0, = 35.3 and O~ = 63.4' as shown
in Fig. 3(d). Between these angles we have ;.\ < 0 implying 11, < n. which. in turn. implies
a state of divergence instability. These negative values of 11 \ arc not shown in Fig. 3(d).

In Fig. 3(e) static bifurcation is possible for 0 1 = 2X.3 and O~ = 72.4 and a state of
divergence instability exists between these angles; again the negative values of 11 \ in this
region arc not plotted. Another interesting phenomenon appears from Fig. 3(e). namely
that of difl'use wave motions. It appears that at point P we have 11~/G = JI \,G = I (and of
course 11,/G = I). The point P corresponds to n; = I. According to eqns (83) and (96) we
obtain for ditl'use wave modes

. 1-2\' I [I , , 'J
1.\ = 2(1-~;) = 1+-(---1/-)' 1_\;(3ni-I)--2(3ni+ I) (102)

, 1+ -
-. G

which. as expected. is fulfilled for 1/; = I and the value lI/G = 1-8\' that was adopted in
Fig. 3(e).

In accordance with Table I and since /1 > /~ = /1 for uniaxial tension. a dill'use wave
motion should exist also for n~ = O. This situation is shown in Fig. 3(1') at the point Q
where n; = 0 holds. As expected. the value fllG = - 2( 1+ I') adopted in Fig. 3(f) and
,d = 0 satisfy elln (102). In Fig. 3(1} it is also of importance to notc that the characteristic
four-leaf clover-shaped graphs of the variation of illiG have given way to slender two-leaf
shape. This is a result of the angle O~ being extended to 90. and in this case only the minus
sign in front of the square root in egn (100) provides a value of n; in the range
o~ n; ~ I. In the present situation we obtain 0 1 = 7.3 '. It is of interest that the value of
the hardening modulus used in Fig. 3(1') can be written as fI = - £ and this corresponds
to a softening branch having a vertical slope. i.e. a completely brittle beh~tviour. However.
even in this extreme case the condition A = H + 3G = G( I - 2\') > 0 is fulfilled.

We finally observe from Figs 3(a)-3(e) that ILJ/G = I holds for fir = 0 or fI~ = I. It is
easily shown from eqn (99) that this is a general result. which holds as long as HIG ;:: 1-8\'.
From eqn (99) it also follows for - 2( I + v) ~ HIG < I - 8v that fI~ = 0 still implies
IIJ/G = I. whereas n; = I now implies II~/G = I. cf. Fig. 3(f). This change of behaviour
explains the change of the four-leaf clover shape of Fig. 3(e) to the two-leaf shape of Fig.
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3(f). For the remaining range defined by -3 < H/G < -2(1 +v) it is easily shown from
eqn (99) that ni = 0, or ni = I, always implies 1l~/G = 1.

Rankine criterion

As a material model representative for the model1ing of l.:racks in cementitious material
we now consider the associated maximum tension cut-off criterion. i.e.

(103)

where <it ~ <i: ~ <iJ are the principal stresses (tension positive) and <it > 0 is the uniaxial
tensile yield stress. From eqn ('+0) we obtain

From eqns ('+) and (48) it follows that

ni v:
Pili, = -1---';'- + ("~I~)'.- .;\' -.;:v •

( 104)

( - )~'-
4 fli + I _ 2v

2G( I - \,). 2G ( _ ~,:)
A = H+ ; 1.\ = 1+- -.- fI~-2f1i- ". -- .

1-2\' - A(I -\') 1-2v

Consequently. usc ofeqns (51). (52), (lJ7). (104) and (105) results in

Il~) {(j I 3-4v
= 2 1-21' - II

Jl\ 2( I - I') + (I - 2~') ,
(j &

(lOS)

( 106)

These relations refer to a general stress state satisfying the yield criterion. However. the
values of JI:IG and 11.l/G depend only on v, fli and IIIG. Similar to the previous c'lse. eqn
(107) is illustrated in the polar diagram shown in Fig. 4. where the value v = 0.3 is adopted.

Figure 4(a) shows the clastic behaviour and Fig. 4(b) the hardening response. Accord
ing to eqns (83) and (lOS) diffuse wave motion requires that

This relation is fulfilled for I'; = I and HIG = 2( I - \.). i.e. point P in Fig. 4(c) shows. ,IS

expcctcd. a state of diffusc wave motion. ft is of considerable interest to notc that. in
contrast to a von Mises criterion. we now have diffuse wave motion in the hardening regime.

Static bifurcation becomes possible when ;'J = O. which due to eqn (105) yields the
relation



A..-celeration waves in elasto-plasticity 155

(a I ElastIc

/",--

/
/

/
/

{
I

\
\
\

""- "-
' .....-

- .......... }L:t,IG

",
\

\

\
\
I

I
I

/
/

/
/'-_/'

(b I H/G =4

,/--
/

I

I
I
\
\

I
(
\
\

\
"- .....

-.....
"

\
\
I
I
I

\
\
I
J

/
/

,/-

(c I H/G=211-vl=14 (d) H/G=O

/- -, -...../ "
/'

I \ / "-
I \ I \
I I I \
\ I I
\ I \ I
\ I \ I
,

\ I \I
I \ I \
I f> I I
\ I I I
\ / \ I

\ /
\ /,

/' "- ..... _/

....- -

(eIH/G:-1

8:39.7·

1'\ /
}O'
'I
I

I

I \
f \
I ,
\ /"- ",,/

( f I H/G: ~2 (1 t vI : - 26

/--... 11"".....'
fa I 1
\ I

I I
t I
\ J,_.........._/

fig. 4. Rankine: plasli,:ity; ge:ne:ral stre:ss state:s; v = 0.3. Variation of normalil.cd eigcnvalues
JI1/G (-- -I and IllfG (--) with thc valueofn,.

/Ii = I +J-(I - v) !!- 2G'
(109)

The smallest stress level for which this relation becomes possible is when the discriminant
is lero, providing the conditions

H=O;
,

nj = (110)

i.e, 0 = 90 as sin 0 = 11,. These expressions are in accordance with the findings by Ottosen
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and Runesson (1991). It appears that Fig. 4(d) illustrates the situation where static bifur
cation first becomes possible.

In the softening region. where HIG = - \, the response is shown in Fig. 4(e). Static
bifurcation is still possible and it may occur for the value of n~ provided by eqn (109),
where it is obvious that only the minus sign in front of the square root can be applied. With
sin 0 = n I' we obtain 0 = 39.7 and in the region defined by IjJ = ± (90 - 0) = ± 50.3 . we
have I.; < 0 implying divergence instability as well as negative values of J.l; not shown in
the figure.

Finally. in Fig. 4(f) we obtain a state of diffuse wave motion at point Q. This is in
agreement with the fact that, according to Table I. n~ = 0 is a possibility sincefl > J~ = I,.
As expected. the conditions n~ = 0 and H/G = - 2( I + I') fulfil eqn (108). Like in Fig. 3(f).
we observe that the value of the hardening modulus used in Fig. 4(f) can be written as
H = - E. and this corresponds to a softening branch having a vertical slope; even so.
the condition A = H + 2G( 1- v)/( 1- 2\') = 4GI'~ /( I - 2\') > 0 is fulfilled. The direction for
which static bifurcation is possible is determined by 0 = 12.4 .

We finally observe from Figs 4(a)-4(c) that J.ll/G = I holds for n~ = 0 or n~ = I. It
appears readily from eqn (107) that this is a general result which holds as long as
HIG ~ 2(1-1'). From eqn (107) follows also that for -2(1 +\') ~ H/G < 2(1-\') then
n; = 0 still implies J.t./G = l. whereas n; = I now implies /-1:IG = l. cf. Fig. 4(d)-4(0.
This change in behaviour explains the change in the variation of /-l,/G when compar
ing Figs 4(a) -4(c) with Figs 4(d)-4(f). For the remaining range where - 2( I - 1')/( I - 2\') <
II/G < - 2( I + I') it is easily shown from eqn (107) that n; = 0 or n~ = I always implies
J.t:/G = I.

CONCLUSIONS

Explicit analytical expressions were derived for the eigenvalw:s and eigenvcctors of the
acceleration wave problem pertinent to general nonassociated plasticity theory. For associ
ated plasticity. these expn:ssions reduce to those obtained by "ill (11)62). The eigenvectors
an: orthogonal for associated plasticity, whcreas nonassociated plasticity implies that all
eigenvectors arc nonorthogonal. It is of interest that one eigenvalue is always equal to the
shear modulus. It was shown for a very general class of nonassociated plasticity behaviour
that the eigenvalues arc always real. implying that so-called "divergence" instability can
occur whereas "t1utter" instability cannot. In addition. we discovered the interesting
phenomenon of diffuse wave motion. which can occur in any e1asto-plastic material. In this
situation all wave speeds become identical and equal 10 the elastic distortion wave speed.
and the corresponding eigenvectors arc arbitrary. Finally. for the models of von Mises and
Rankine some of the ditferent phenomena were illustrated graphically. and it was observed
that ditfuse wave modes might occur both in the hardening and softening regimes.
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APPENDIX

A,cording to eqn (71}). we shall determine e:O(lrema for the function cp given by

cp = RS-A,ni-A:n~-A,ni

suhje,ted to the constraint

n;+n~+ni-I =0.

In eqn (A I). we have adopted the Ol'tation

K = (f +i"; )(g, +i'9,) (no summation).

Using the Lagrange multiplier te,hnique. we define

L = 'I' -}.(n; +II~ +ni-1)

li'r whi,h the ne,essary i:l'ntliti\>ns of e~tremum points are

(AI)

(A2)

(A3)

(A5)

,'L
,"" = 2..1,'" ~ O(no summation);
"II,

wher,

t'L •••
,-.- = -(IIi +11: +n; -I) ~ 0
u.

(A6)

,I, = I:.'; + (I, R- A, - ;. (i ~ l. 2, 3). (A7)

In th, following we ,h;III assulIle thai (, :) I: ':: (, and (I, ).11:., .11,. We may nuw itkntify thrl'e ,ases lilr whi,h
o:qn (A(,) is fullillo:d; (i) nono: of ",. ",. ", is Io:ro. (ii) une uf II,. II ,. II, is zero and (iii) twuuf 11,. II,. 11, arc zero.

(i) NOllc o( n,. n:. II, i.l' :cro
i"nllll o:qn (A('), wo: '"Il\;ludo: that ..I, o~ ••j, ~ A, = n. Frum elln (A7). we do:termino: ;. from A, = 0 and uso:

this o:xpro:ssilln in o:onjuno:tion with A, = 0 and ..I, = 0 tu ohtain

S( (,-I,l+R(g,-g:)+A,-K, = 0

s( I, - 1.1 + Rel/' - 9 .I + A, - A, = o. (AX)

Using Iho: o:unstraint wndition "i = I -lIj -IIi in the cxpro:ssions for Rand S givo:n hy O:lIn (A3). we ohtain from
(AX)

(/, -I,H~I/' ~g,)+ U, -I,H.I/' -9dJ ["~J = [U, -I,Hg, -y')J.
-(J, - l,lly, -.1/.1 II] (J, - },)(y, -g)

(A9)

Lo:I us now "aluato: solutiuns uf elln (A9) reo:alling that II; > O.,,! > 0 and IIi> 0 hold.

(i I) ..Inltll/I- 1', > 1': ~ 1'" g, > g: ~ g,. By a row operation and some algebra. eqn (A9) can he transformed
tu tho: fulluwing form

wl1<:re

(/, -I,)(.</, -g:l +U, - 1,)(,1/, -g'J ["!J = [U, - I,)<.q, -.I/')J
P IIj Q

(AIO)

I' = -lU, -/,)(,q, -.I/d -(/, -/,H.q, -.q,))' "0

Q = U, -/,)(g, -g,)[II, -(,)(g, -g,) +U, -(.l(g, -g,l)' ;l: o.

(All)

(AI2)

Clearly. in urder th;lt I'"i = Q admits a solution "i > O. we must require that P =Q =O. As I, > I, and..tl' > .q,
Ihe requirement Q = 0 implies that the contrihution from the bracket present in the expression for Q must be
zero. lIowever. as hoth terms in this bracket are non-negative. we must require I, = I, and .q, = f/,. This
requirement also implies that P = O. Therefore we need only consider the case:



158 N. S. OTTOSE~ and K. RL~ESSO~

(ila) f, > f: = fl' g, > g: = g,
From the first row in eqn (AIO) we obtam

n~+,,~ = :,
. ,

nj = ~ (AI~)

and from eqn (A I), the corresponding e:\\remum value of rp becom.:s

(jI = - ;U, - Idl.'I, -'I') < O.

(i~) Assume 1', = f, ~ f,. g, > g, ~ g,. The equation syst.:m (A9) reduces t"

[ 0 1(,-I')(.I/'-<l')J["iJ [ 0 J
((, - Idlq, -g:l ~U, - I')(9, -g,) "i = (/, -f,)(q, -.1/,) .

In ord.:r that ni > 0 w.: must requir.: /, = /, = II and. thert:for.:. w.: only consld.:r th.: case:

li~a) f, = 1', = 1'.. g, > g, ~ g,
The cquati,'ns a!>ove arc fulfilled identically and we have the solution

In this cas.:. it is .:asily slwwn that eqn (A I) yidds

'f' = O.

(i~) f, > 1', ~ f
"

g, = g, ~ g,. [quati,m (I\'}) reduces to

(AI5)

(AI6)

(/\ 17)

r
0

_(r, - 1,)( q, - q ,)
(1\1 XI

Ckarly. in order th;,t n; > 0 we l1Iust require -", ~ -", ~ .'1 .. i.e. we arc left with the case:

(1.1;1) f, > t~ ~ f,. g, = g, = il,
Equation (AlK) is always fultilled and we have

as well as

rp = O.

li.t) f, = f, ~ fl. g, = g, ~ g,. Equation (N» becomes

~(f, -f.J(" , -.l/d,d = «(, -/,)(.1/, -.'Id·

Equation (A21) provides

Evaluation of eqn (A I) gives

rp = - ;(/,-/,)(y, -y,) < 0.

(i.tb) f, = f, = fl. g, = g: ~ g,
Equation (A21) is fultilkd identically and we just have

n;+ni+fI; = 1

as welt as

rp = o.

(i-k) f, = f, > f,. g, = g, = g,
The solutions given by eqns (A2.t) and (A25) ar.: valid.

(ii) On!' or n,. n,. i., :"f{/
(ii 1) n, = 0 (n, ~ O. n, ~ 0). From eqn (A6). we obtain A: = A, = O. which due to eqn (A 7) results in

J~S+y,R-K,-i. = 0

!,S+g,R-K,-i. = o.

Eliminating i. and using the constraint condition fli = I -fl;. we obtain the rdation

(Al"I)

IA20)

IA21)

IA2~)

(A2.t)

(A25)
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(iila) Assume f, ~ f: > f,. g, ~ g: > g,
The equation above yields

and <p given by eqn (A 1) lx"\:omes

<p= -:(j~-f.)(y,-g,,<O.

(iilb) A.Hum.. 1', ~ f, f, and or g, ~ g, '" g,
Equation (A26) is identically satisfied and ""e have simply

as well as

<p = n.

lii2) n: = 0 (n, ,e O. n, -# 0). From eqn (A6>. we obtain A, = A, = 0 which due to eqn (A7) results in

{,S+g,R 1\,-).=0

{,S+g,R-I\,-). = O.

Eliminilting i. ilnd using the constraint cllOdition"i = I-n;. we ohtilin

{ii2il' As.nllll<' 1', > 1'.. g, > g,
The ahow equali,lI1 results in

and tp given hy eqn (A I) hewmes

tp '" -lU, -/.11.1/, -.'I,) < O.

(ii2o) ,,1.1'.'1/11I<' 1', '" 1': '" 1',. wltI(or g, '" g: ... g,
Equatioll (A.H) is idelltkally satistied and we are left with

ni+n; = I. n; =0. tp =0.

(iD) II, = n (II, l' H. n, "I' H). From e1ln (A6) we obtain ..t, = A, = H whil:h due to eqn (A7) results in

{,5;+I"R I\,-).=H

/,S +!/:R-I\, -I. = H.

Eliminating). and using the constraint condition n~ = I -ni. we obtain

2U,-{,)(I/, -g,)lIi = (I', -{,K/I, -.'I:).

(iDa) A.HI/me f, > f, ~ 1'.. g, > g, ~ III
The above equation results in

159

(A26)

(A27)

(A29)

(A30)

(A31)

(A32)

('\33)

('\34)

(A35)

and <p given by eqn (AI) heeomes

• I
IIi = !~ ,,~ = 0 (1\36)

(ii3b) A.mlnl'- 1', = f, ~ f, anti/or g, = g: ~ g,
Equation (A35) is. again. identically satisfied and we are left with

ni +n~ = I. n; = 0, tp = o.

(A37)

(A38)

(iii) Tn'" of n,• n:. n, elrt' :,'rt1
Assume that ni = I while n~ = n; = O. It then immediately follows from cqn (A I) th:\t tp = O. likewise.

when n~ = I or IIi = 1 we obtain th:1l tp = O.
In conclusion. it h:ls heen proved that tp ~ 0 for all extrema. i.e. tp ~ 0 holds always. The situations for which

tp = 0 are summ:lri1.ed in Table I.


